(本小题满分12分)设向量=(3,1),
=(-1,2),向量
垂直于向量
,向量
平行于
,试求
时,
的坐标.
(本小题满分13分)已知椭圆过点
,两焦点为
、
,
是坐标原点,不经过原点的直线
与椭圆交于两不同点
、
.
(1)求椭圆C的方程;
(2)当时,求
面积的最大值;
(3)若直线、
、
的斜率依次成等比数列,求直线
的斜率
.
【改编题】(本小题满分13分)各项均为正数的数列的前
项和为
,已知点
在函数
的图象上,且
(Ⅰ)求数列的通项公式;
(Ⅱ)在之间插入
个数,使这
个数组成公差为
的等差数列,求数列
的前
项和
.并求
的最小值.
(本小题满分13分)已知函数
(1)求函数的单调区间;
(2)当时,
,求实数
的取值范围
(本大题满分12分)从某学校的名男生中随机抽取
名测量身高,被测学生身高全部介于
和
之间,将测量结果按如下方式分成八组:第一组
,第二组
,第八组
,下图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为
人.
(Ⅰ)求第七组的频率;
(Ⅱ)估计该校的名男生的身高的中位数以及身高在
以上(含
)的人数;
(Ⅲ)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为,事件
,事件
,求
(本大题满分12分)四棱锥中,
⊥底面
,
,
,
.
(Ⅰ)求证:⊥平面
;
(Ⅱ)若侧棱上的点
满足
,求三棱锥
的体积.