(本小题满分12分)高二级某次数学测试中,随机从该年级所有学生中抽取了100名同学的数学成绩(满分150分),经统计成绩在的有6人,在
的有4人.在
,
各区间分布情况如右图所示的频率分布直方图,若直方图中,
和
对应小矩形高度相等,且
对应小矩形高度又恰为
对应小矩形高度的一半.
(1)确定图中的值;
(2)设得分在110分以上(含110分)为优秀,则这次测试的优秀率是多少?
(3)某班共有学生50人,若以该次统计结果为依据,现随机从该班学生中抽出3人, 则至少抽到一名数学成绩优秀学生的概率是多少?
已知函数(
为常数)是实数集R上的奇函数,函数
是区间[-1,1]上的减函数
(I)求的值;
(II)求的取值范围;
(III)若在
上恒成立,求
的取值范围。
已知椭圆C:+
=1(a>b>0)的一个焦点是F(1,0),且离心率为
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设经过点F的直线交椭圆C于M,N两点,线段MN的垂直平分线交y轴于点P(0,y0),求y0的取值范围.
通过市场调查,得到某产品的资金投入x(万元)与获得的利润y(万元)的数据,如表所示:
资金投入x |
2 |
3 |
4 |
5 |
6 |
利润y |
2 |
3 |
5 |
6 |
9 |
(Ⅰ)画出数据对应的散点图;
(Ⅱ)根据上表提供的数据,用最小二乘法求线性回归直线方程=x+;
(Ⅲ)现投入资金10万元,估计获得的利润为多少万元?
电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名。下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.
(Ⅰ)根据已知条件完成下面的2×2列联表,并据此资料判断是否有95%的把握认为“体育迷”与性别有关?
非体育迷 |
体育迷 |
合计 |
|
男 |
|||
女 |
|||
合计 |
(Ⅱ)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2名,求至少有1名女性观众的概率.
附:K2=,其中n=a+b+c+d.
P(K2≥k) |
0.05 |
0.01 |
k |
3.841 |
6.635 |
求下列各曲线的标准方程
(Ⅰ)实轴长为12,离心率为,焦点在x轴上的椭圆;
(Ⅱ)抛物线的焦点是双曲线的左顶点.