为了对某课题进行讨论研究,用分层抽样的方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人)
高校 |
相关人数 |
抽取人数 |
A |
X |
1 |
B |
36 |
y |
C |
54 |
3 |
(1)求x,y;
(2)若从高校A,C 抽取的人中选2人作专题发言,求这两人都来自高校C的概率.
已知,函数
,
(其中
为自然对数的底数).
(1)求函数在区间
上的最小值;
(2)是否存在实数,使曲线
在点
处的切线与
轴垂直? 若存在,求出
的值;若不存在,请说明理由.
某公司为庆祝元旦举办了一个抽奖活动,现场准备的抽奖箱里放置了分别标有数字1000、800﹑600、0的四个球(球的大小相同).参与者随机从抽奖箱里摸取一球(取后即放回),公司即赠送与此球上所标数字等额的奖金(元),并规定摸到标有数字0的球时可以再摸一次﹐但是所得奖金减半(若再摸到标有数字0的球就没有第三次摸球机会),求一个参与抽奖活动的人可得奖金的期望值是多少元.
如图6,正方形所在平面与圆
所在平面相交于
,线段
为圆
的弦,
垂直于圆
所在平面,垂足
是圆
上异于
、
的点,
,圆
的直径为9.
(1)求证:平面平面
;
(2)求二面角的平面角的正切值.
已知:向量,
,函数
(1)若且
,求
的值;
(2)求函数的单调增区间以及函数取得最大值时,向量
与
的夹角.
如图某河段的两岸可视为平行,为了测量该河段的宽度,在河段的一岸边选取两点A、B,观察对岸的点C,测得,
,且
米。
(1)求;
(2)求该河段的宽度。