(本小题满分12分)
设二次函数,函数
的两个零点为
.
(1)若求不等式
的解集;
(2)若且
,比较
与
的大小.
如图,在海岸线一侧C处有一个美丽的小岛,某旅游公司为方便游客,在上设立了A、B两个报名点,满足A、B、C中任意两点间的距离为10千米。公司拟按以下思路运作:先将A、B两处游客分别乘车集中到AB之间的中转点D处(点D异于A、B两点),然后乘同一艘游轮前往C岛。据统计,每批游客A处需发车2辆,B处需发车4辆,每辆汽车每千米耗费2元,游轮每千米耗费12元。设∠,每批游客从各自报名点到C岛所需运输成本S元。
⑴写出S关于的函数表达式,并指出
的取值范围;
⑵问中转点D距离A处多远时,S最小?
如图的几何体中,平面
,
平面
,△
为等边三角形,
,
为
的中点.
(1)求证:平面
;
(2)求证:平面平面
.
在三角形ABC中,已知,设∠CAB=α,
(1)求角α的值;
(2)若,其中
,求
的值.
设函数f(x)=|2x-1|+|2x-3|,x∈R
(Ⅰ)解不等式f(x)≤5;
(Ⅱ)若的定义域为R,求实数m的取值范围.
已知曲线C的极坐标方程为,直线
的参数方程为
( t为参数,0≤
<
).
(Ⅰ)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;
(Ⅱ)若直线经过点(1,0),求直线
被曲线C截得的线段AB的长.