(本小题满分12分)
在四棱锥P—ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2。
(Ⅰ)求证:BE∥平面PAD;
(Ⅱ)求证:BC⊥平面PBD;
(Ⅲ)设Q为侧棱PC上一点,试确定
的值,使得二面角Q—BD—P为45°。
(本题满分15分,请列式并用数字表示结果,直接写结果不得分)
从5名女同学和4名男同学中选出4人参加四场不同的演讲,分别按下列要求,各有多少种不同
选法?
(1)男、女同学各2名;
(2)男、女同学分别至少有1名;
(3)在(2)的前提下,男同学甲与女同学乙不能同时选出.
已知z为复数,z+2和
均为实数,其中
是虚数单位
.
(1)求复数z;
(2)若复数在复平面上对应的点在第一象限,求实数a的取值范围.
函数的图象在
处的切线方程为
(1)求函
数
的解析式;
(2) 求函数的单调递减区间。
已知二次函数对任意实数
,都有
,且
时,有
成立,(1)证明f(2)=2;(2)若
,求f(x)的表达式;
⑶ 在题(2)的条件下设
,若
图象上的点都位于直线
的上方,求实数m的取值范围.
围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2m的进出口,如图所示已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙长
度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元)
⑴将y表示为x的函数;
⑵写出f(x)的单调区间(不必证明)
⑶根据⑵,试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。