(本小题满分12分)某批发市场对某商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:
周销售量 |
2 |
3 |
4 |
频数 |
20 |
50 |
30 |
(1)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;
(2)已知每吨该商品的销售利润为2千元,表示该种商品两周销售利润的和(单位:千元),若以上
述频率作为概率,且各周的销售量相互独立,求
的分布列和数学期望.
先后随机投掷2枚正方体骰子,其中表示第
枚骰子出现的点数,
表示第
枚骰子出现的点数.
(Ⅰ)求点在直线
上的概率;
(Ⅱ)求点满足
的概率.
已知函数
(1)用五点法画出它在一个周期内的闭区间上的图象;
(2)求函数的单调增区间;
(3)若,求
的最大值和最小值.
已知函数
(Ⅰ)若是从
三个数中任取的一个数,
是从
四个数中任取的一个数,求
为偶函数的概率;
(Ⅱ)若,
是从区间
任取的一个数,求方程
有实根的概率.
已知为第三象限角,
.
(1)化简(2)若
,求
的值
已知,直线
与函数
的图像都相切,且与函数
的图像的切点的横坐标为1.
(1)求直线的方程及
的值;
(2)若(其中
是
的导函数),求函数
的最大值;
(3)当时,求证:
.