如图,在三棱拄中,
侧面
,已知
(Ⅰ)试在棱(不包含端点
上确定一点
的位置,使得
;
(Ⅱ) 在(Ⅰ)的条件下,求二面角的平面角的正切值.
已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;
(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.
设命题p:f(x)=在区间(1,+∞)上是减函数;命题q:x1,x2是方程x2-ax-2=0的两个实根,且不等式m2+5m-3≥|x1-x2|对任意的实数a∈[-1,1]恒成立.若
p∧q为真,试求实数m的取值范围.
已知集合A={x|1<ax<2},集合B={x||x|<1}.当AB时,求a的取值范围.
已知数列中,
(1)求,
;
(2)求证:是等比数列,并求
的通项公式
;
(3)数列满足
,数列
的前n项和为
,若不等式
对一切
恒成立,求
的取值范围.
如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上,此时到达C处.
(1)求渔船甲的速度;
(2)求sinα的值.