游客
题文

(本题满分14分)
已知函数其中实数
(1)-2,求曲线在点处的切线方程;
(2)x=1处取得极值,试讨论的单调性。

科目 数学   题型 解答题   难度 中等
知识点: 组合几何
登录免费查看答案和解析
相关试题

我校高三年级进行了一次水平测试.用系统抽样的方法抽取了50名学生的数学成绩,准备进行分析和研究.经统计成绩的分组及各组的频数如下:
[40,50), 2; [50,60), 3; [60,70), 10; [70,80), 15; [80,90), 12; [90,100], 8.
(Ⅰ)完成样本的频率分布表;画出频率分布直方图.
(Ⅱ)估计成绩在85分以下的学生比例;
(Ⅲ)请你根据以上信息去估计样本的众数、中位数、平均数.(精确到0.01)
频率分布表频率分布直方图

如图,四棱锥P—ABCD中,底面ABCD是边长为的正方形E, F分别为PC,BD的中点,侧面PAD⊥底面ABCD,且PA=PD=AD.

(Ⅰ)求证:EF//平面PAD;
(Ⅱ)求三棱锥C—PBD的体积.

已知公比大于1的等比数列{}满足:++=28,且+2是的等差中项.(Ⅰ)求数列{}的通项公式;
(Ⅱ)若=,求{}的前n项和.

设函数,记的导函数的导函数

的导函数,…,的导函数.
(1)求
(2)用n表示
(3)设,是否存在使最大?证明你的结论.

某水域一艘装载浓硫酸的货船发生侧翻,导致浓硫酸泄漏,对河水造成了污染.为减
少对环境的影响,环保部门迅速反应,及时向污染河道投入固体碱,个单位的固体碱在水中
逐渐溶化,水中的碱浓度与时间(小时)的关系可近似地表示为:
,只有当污染河道水中碱的浓度不低于时,才能对污
染产生有效的抑制作用.
(1)如果只投放1个单位的固体碱,则能够维持有效的抑制作用的时间有多长?
(2)第一次投放1单位固体碱后,当污染河道水中的碱浓度减少到时,马上再投放1个单
位的固体碱,设第二次投放后水中碱浓度为,求的函数式及水中碱浓度的最大值.
(此时水中碱浓度为两次投放的浓度的累加)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号