如图,PDCE为矩形,ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=CD=1,PD=
.
(1)若M为PA中点,求证:AC∥平面MDE;
(2)求直线PA与平面PBC所成角的正弦值;
(3)在线段PC上是否存在一点Q(除去端点),使得平面QAD与平面PBC所成锐二面角的大小为?
已知四棱锥P-ABCD,底面ABCD是、边长为
的菱形,又
,且PD=CD,点M、N分别是棱AD、PC的中点.
(1)证明:DN//平面PMB;
(2)证明:平面PMB平面PAD;
(3)求点A到平面PMB的距离.
(本小题满分12分)为了了解甘肃省各景点在大众中的熟知度,随机对15~65岁的人群抽样了人,回答问题“甘肃省有哪几个著名的旅游景点?”统计结果如下图表.
组号 |
分组 |
回答正确的人数 |
回答正确的人数 占本组的频率 |
第1组 |
[15,25) |
a |
0.5 |
第2组 |
[25,35) |
18 |
x |
第3组 |
[35,45) |
b |
0.9 |
第4组 |
[45,55) |
9 |
0.36 |
第5组 |
[55,65] |
3 |
y |
(1)分别求出a,b,x,y的值;
(2)从第2,3,4组回答正确的人中用分层抽样的方法
抽取6人,求第2,3,4组每组各抽取多少人?
(3)在(2)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.
(本题满12分)在中,角
的对边分别为
且
(1)求的值;
(2)若,且
,求
的值.
(本小题满分l0分)选修4—5:不等式选讲
已知函数
(1)当时,解不等式
;
(2)若存在,使得,
成立,求实数
的取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程
在直角坐标系中,圆
的参数方程
为参数).以
为极点,
轴的非负半轴为极轴建立极坐标系.
(1)求圆的极坐标方程;
(2)直线的极坐标方程是
,射线
与圆
的交点为
,与直线
的交点为
,求线段
的长.