本着健康、低碳的生活理念,租自行车骑游的人越来越多。某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算)。有甲乙两人相互独立来该租车点租车骑游(各租一车一次),设甲、乙不超过两小时还车的概率分别为;两小时以上且不超过三小时还车的概率分别为
;两人租车时间都不会超过四小时.
(1)求出甲、乙两人所付租车费用相同的概率;
(2)设甲、乙两人所付的租车费用之和为随机变量,求
的分布列与数学期望
.
(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问3分,(Ⅲ)小问4分)
为了了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,记录了小李第天打篮球的时间
(单位:小时)与当天投篮命中率
的数据,其中
.
算得:.
(Ⅰ)求投篮命中率对打篮球时间
的线性回归方程
;
(Ⅱ)判断变量与
之间是正相关还是负相关;
(Ⅲ)若小李明天准备打球小时,预测他的投篮命中率.
附:线性回归方程中
,其中
为样本平均数.
(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分)
已知等差数列满足:
.
(Ⅰ)求数列的通项公式;
(Ⅱ)若,求数列
的前
项和
.
(本题共12分,第(Ⅰ)问4分, 第(Ⅱ)问8分)
已知曲线.从点
向曲线
引斜率为
的切线
,切点为
.
(Ⅰ)求数列的通项公式;
(Ⅱ)证明:.
(本题共12分,第Ⅰ问4分,第Ⅱ问8分)
设椭圆过点
,且左焦点为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)当过点的动直线
与椭圆
相交于不同两点
时,在线段
上取点
,满足
.证明:点
总在某定直线上.
(本题共12分,第Ⅰ问6分,第Ⅱ问6分)
已知函数,
.
(Ⅰ)讨论函数的单调性;
(Ⅱ)若函数的图象与
轴有
个不同的交点,求
的取值范围.