如图,椭圆的中心在原点,为椭圆的左焦点,
为椭圆的一个顶点,过点
作与
垂直的直线
交
轴于
点, 且椭圆的长半轴长
和短半轴长
是关于
的方程
(其中
为半焦距)的两个根.
(1)求椭圆的离心率;
(2)经过、
、
三点的圆与直线
相切,试求椭圆的方程.
设是一个自然数,
是
的各位数字的平方和,定义数列
:
是自然数,
(
,
).
(1)求,
;
(2)若,求证:
;
(3)求证:存在,使得
.
已知椭圆的一个焦点为
,且离心率为
.
(1)求椭圆方程;
(2)过点且斜率为
的直线与椭圆交于
两点,点
关于
轴的对称点为
,求△
面积的最大值.
已知,函数
,
.
(Ⅰ)若曲线与曲线
在它们的交点
处的切线互相垂直,求
,
的值;
(Ⅱ)设,若对任意的
,且
,都有
,求
的取值范围.
如图,在三棱锥中,
,
,
°,平面
平面
,
,
分别为
,
中点.
(1)求证:∥平面
;
(2)求证:;
(3)求三棱锥的体积.
汽车的碳排放量比较大,某地规定,从2014年开始,将对二氧化碳排放量超过130g/km的轻型汽车进行惩罚性征税.检测单位对甲、乙两品牌轻型汽车各抽取5辆进行二氧化碳排放量检测,记录如下(单位:g/km).
经测算得乙品牌轻型汽车二氧化碳排放量的平均值为.
(1)从被检测的5辆甲品牌轻型汽车中任取2辆,则至少有一辆二氧化碳排放量超过的概率是多少?
(2)求表中的值,并比较甲、乙两品牌轻型汽车二氧化碳排放量的稳定性.