(本小题满分12分)在锐角中 ,三个内角A、B、C的对边分别为a、b、c,且满足
(1)求的值;
(2)若b=3,求a+c的最大值。
已知圆:
,设点
是直线
:
上的两点,它们的横坐标分别是
,点
在线段
上,过
点作圆
的切线
,切点为
.
(1)若,
,求直线
的方程;
(2)若O为原点,经过三点的圆的圆心是
,求线段
长的最小值
.
如图,已知椭圆C:(a>b>0)的右焦点为F(c,0),下顶点为A(0,﹣b),直线AF与椭圆的右准线交于点B,若F恰好为线段AB的中点.
(1)求椭圆C的离心率;
(2)若直线AB与圆x2+y2=2相切,求椭圆C的方程.
如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x-3y-6=0,点T(-1,1)在AD边所在的直线上.
(1)求AD边,CD边所在直线的方程;
(2)求矩形ABCD外接圆的方程.
已知y=2x是△ABC中∠C的内角平分线所在直线的方程,若A(﹣4,2),B(3,1).
(1)求点A关于y=2x的对称点P的坐标;
(2)求直线BC的方程;
(3)判断△ABC的形状.
已知圆M的方程为x 2+(y-2)2=1,直线l的方程为x-2y=0,点P在直线l上,过P点作圆M的切线PA,PB,切点为A,B.
(1)若∠APB=60°,试求点P的坐标;
(2)若P点的坐标为(2,1),过P作直线与圆M交于C,D两点,当时,求直线CD的方程;
(3)求证:经过A,P,M三点的圆必过定点,并求出所有定点的坐标.