某游泳馆出售学生游泳卡,每张240元,使用规定:不记名,每卡每次只限1人,每天只限1次,某班有48名学生,老师打算组织同学们去游泳,除需购买若干张游泳卡外,每次还要包一辆汽车,无论乘坐多少人,每次的包车费均为40元,若使每个同学游8次,每人最少交多少钱?
如图,正方形所在平面与平面四边形
所在平面互相垂直,△
是等腰直角三角形,
(1)线段的中点为
,线段
的中点为
,求证:
;
(2)求直线与平面
所成角的正切值.
已知在等比数列中,
,且
是
和
的等差中项.
(1)求数列的通项公式;
(2)若数列满足
,求
的通项公式
.
已知函数,其中
,
,在
中,
分别是角
的对边,且
,
(1)求角;(2)若
,
,求
的面积.
已知函数为常数,
(1)当时,求函数
在
处的切线方程;
(2)当在
处取得极值时,若关于
的方程
在
上恰有两个不相等的实数根,求实数
的取值范围;
(3)若对任意的,总存在
,使不等式
成立,求实数
的取值范围。
椭圆:
的右焦点
与抛物线
的焦点重合,过
作与
轴垂直的直线
与椭圆交于
两点,与抛物线交于
两点,且
。
(1)求椭圆的方程;
(2)若过点的直线与椭圆
相交于两点
,设
为椭圆
上一点,且满足
为坐标原点),当
时,求实数
的取值范围。