已知二次函数, 满足
且
的最小值是
.
(1) 求的解析式;
(2) 设直线,若直线
与
的图象以及
轴所围成封闭图形的面积是
, 直线
与
的图象所围成封闭图形的面积是
,设
,当
取最小值时,求
的值.
(3)已知, 求证:
.
在中,角
所对应的边分别为
,且
,
(1)求角的大小
(2)若, 求
的面积
如图,圆的直径
的延长线与弦
的延长线相交于点
,
为圆
上一点,
交
于点
,且
(1)求线段的长度
(2)若圆与圆
内切,直线
与圆
切于点
,
求线段的长度
(本小题满分12分)如图,在正方体中,
、
分别为棱
、
的中点.
(1)求证:平面⊥平面
;
(2)如果,一个动点从点
出发在正方体的表面上依次经过棱
、
、
、
、
上的点,最终又回到点
,指出整个路线长度的最小值并说明理由.
(本小题12分)如图,四棱锥中,底面
是正方形,
,
底面
,
分别在
上,且
(1)求证:平面∥平面
.
(2)求直线与平面面
所成角的正弦值.
(本小题12分)如图,在底面半径为3,母线长为5的圆锥中内接一个高为的圆柱.
(1)求圆锥的体积.
(2)当为何值时,圆柱的表面积最大,并求出最大值.