设函数
(1)求函数g(x)的极大值
(2)求证
(3)若,曲线y=
与 y=
是否存在公共点,若存在公共点,在公共点处是否存在公切线,若存在,求出公切线方程,若不存在,说明理由。
(本小题满分12分)已知椭圆上任意一点到两焦点
距离之和为
,离心率为
.
(1)求椭圆的标准方程;
(2)若直线的斜率为
,直线
与椭圆C交于
两点.点
为椭圆上一点,求△PAB的面积的最大值.
(本小题满分12分)如图,直三棱柱中,D,E分别是AB,
的中点。
(1)证明:;
(2)设,求异面直线
与
所成角的大小。
(本小题满分12分)下图为某校语言类专业N名毕业生的综合测评成绩(百分制)分布直方图,已知80~90分数段的学员数为21人
(1)求该专业毕业总人数N和90~95分数段内的人数;
(2)现欲将90~95分数段内的名人分配到几所学校,从中安排2人到甲学校去,若
人中仅有两名男生,求安排结果至少有一名男生的概率.
在中,内角
的对边分别为
,并且
.
(1)求角的大小;(2)若
,求
的面积.
(本小题满分10分)选修4-5:不等式选讲
已知函数.
(Ⅰ)解不等式;
(Ⅱ)若的最小值为
,设
且
求
的最小值;.