(本小题12分)在等差数列中,
..
(1)求;
(2)设,求数列
的前
项和
的取值范围.
(本小题满分14分)已知函数
(Ⅰ)求函数的定义域;
(Ⅱ)确定函数在定义域上的单调性,并证明你的结论;
(Ⅲ)若时
恒成立,求正整数
的最大值.
(本小题满分14分)如图,已知椭圆的离心率为
,以该椭圆上的点和椭圆的左、右焦点
为顶点的三角形的周长为
.一等轴双曲线的顶点是该椭圆的焦点,设
为该双曲线上异于顶点的任一点,直线
和
与椭圆的交点分别为
和
.
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线、
的斜率分别为
、
,证明
;
(Ⅲ)探究是否是个定值,若是,求出这个定值;若不是,请说明理由.
(本小题满分13分)如图,在四棱锥中,
平面
,底面
是菱形,
.
(Ⅰ)求证:平面
(Ⅱ)若求
与
所成角的余弦值;
(Ⅲ)当平面与平面
垂直时,求
的长.
(本小题满分13分)设数列的前
项和为
,并且满足
,
.
(Ⅰ)求;
(Ⅱ)猜想的通项公式,并用数学归纳法加以证明.