(本小题满分12分)已知函数.
(Ⅰ)判断并证明函数的奇偶性;
(Ⅱ)利用函数的图像指出其在
上的单调性.
(本小题满分13分)某普通高中共有个班,每班
名学生,每名学生都有且只有一部手机,为了解 该校学生对
两种品牌手机的持有率及满意度情况,校学生会随机抽取了该校
个班的学生进行统计, 得到每班持有两种品牌手机人数的茎叶图以及这些学生对自己所持手机的满意度统计表如下:
(Ⅰ)随机选取1名该校学生,估计该生持有品牌手机的概率;
(Ⅱ)随机选取1名该校学生,估计该生持有或
品牌手机且感到满意的概率;
(Ⅲ)两种品牌的手机哪种市场前景更好?(直接写出结果,不必证明)
(本小题满分14分) 如图,矩形中,
,
.
,
分别在线段
和
上,
∥
,将矩形
沿
折起.记折起后的矩形为
,且平面
平面
.
(Ⅰ)求证:∥平面
;
(Ⅱ)若,求证:
;
(Ⅲ)求四面体体积的最大值.
(本小题满分13分)直角坐标系中,锐角
的终边与单位圆的交点为
,将
绕
逆时针旋转到
,使
,其中
是
与单位圆的交点,设
的坐标为
.
(Ⅰ)若的横坐标为
,求
;
(Ⅱ)求的取值范围.
(本小题满分13分)设是等差数列
的前
项和,已知
,
(Ⅰ)求的通项公式;
(Ⅱ)设,求
的前
项和
.
(本小题满分13分)对于集合,定义函数
,对于两个集合
,
,定义集合
已知
,
.
(Ⅰ)写出与
的值,并用列举法写出集合
;
(Ⅱ)用表示有限集合
所含元素的个数,求
的最小值;
(Ⅲ)求有多少个集合对满足
,且
.