(本小题满分12分)在平面直角坐标系中,已知,
,
(
),
,O为坐标原点,若实数
使向量
,
和
满足:
,设点P的轨迹为
.
(Ⅰ)求的方程,并判断
是怎样的曲线;
(Ⅱ)当时,过点
且斜率为1的直线与
相交的另一个交点为
,能否在直线
上找到一点
,恰使
为正三角形?请说明理由.
设椭圆C1:=1(a>b>0)的左、右焦点分别为为
,
恰是抛物线C2:
的焦点,点M为C1与C2在第一象限的交点,且|MF2|=
.
(1)求C1的方程;
(2)平面上的点N满足,直线l∥MN,且与C1交于A,B两点,若
,求直线l的方程.
已知函数.
(1)试判断函数的单调性,并说明理由;
(2)若恒成立,求实数
的取值范围.
从某学校的名男生中随机抽取
名测量身高,被测学生身高全部介于
cm和
cm之间,将测量结果按如下方式分成八组:第一组[
,
),第二组[
,
),…,第八组[
,
],右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为
人.
(1)求第七组的频率并估计该校800名男生中身高在cm以上(含
cm)的人数;
(2)从第六组和第八组的男生中随机抽取两名男生,记他们的身高分别为,事件
{
},求
.
如图,AB是圆O的直径,点C是弧AB的中点,点V是圆O所在平面外一点,是AC的中点,已知
,
.
(1)求证:AC⊥平面VOD;
(2)求三棱锥的体积.
数列的前
项和为
,且
是
和
的等差中项,等差数列
满足
,
.
(1)求数列、
的通项公式;
(2)设,数列
的前
项和为
,证明:
.