.光滑的平行金属导轨长L=200cm,导轨宽d=10cm,它们所在的平面与水平方向成θ=300,导轨上端接一电阻R=0.8Ω的电阻,其它电阻不计,导轨放在垂直斜面向上的匀强磁场中,磁感应强度B=0.4T,有一金属棒ab的质量m=500g,放在导轨最上端,如图,当ab棒从最上端由静止开始下滑,到滑离轨道时,电阻R上放出的热量Q=1J,g=10m/s2,求棒ab下滑过程中通过电阻R的最大电流?
如图所示,在地面附近有一范围足够大的互相正交的匀强电场和匀强磁场。磁感应强度为B,方向水平并垂直纸面向外。一质量为m、带电量为-q的带电微粒在此区域恰好作速度大小为v的匀速圆周运动。(重力加速度为g)
(1)求此区域内电场强度的大小和方向。
(2)若某时刻微粒运动到场中距地面高度为H的P点,速度与水平方向成45°,如图所示。则该微粒至少须经多长时间运动到距地面最高点?最高点距地面多高?
(3)在(2)问中微粒又运动P点时,突然撤去磁场,同时电场强度大小不变,方向变为水平向右,则该微粒运动中距地面的最大高度是多少?
某游乐场过山车模型简化为如图所示,光滑的过山车轨道位于竖直平面内,该轨道由一段斜轨道和与之相切的圆形轨道连接而成,圆形轨道的半径为R,可视为质点的过山车从斜轨道上某处由静止开始下滑,然后沿圆
形轨道运动。
(1)若要求过山车能通过圆形轨道最高点,则过山车初始位置相对于圆形轨道底部的高度至少要多少?
(2)考虑到游客的安全,要求全过程游客受到的支持力不超过自身重力的7倍,过山车初始位置相对于圆形轨道底部的高度h不得超过多少?
质量为2kg的物体水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的v-t图象如图所示,g取10m/s2,求
(1)物体与水平面间的动摩擦因数μ;
(2)水平推力F的大小;
(3)0-10s内物体运动位移的大小。
汤姆逊用来测定电子的比荷实验装置如下:真空管内的阴极C发出电子,(不计初速,重力和电子间相互作用), 经过A、B间的电场加速后,穿过A、B的中心小孔沿中心轴O/O的方向进入到两块水平正对的长度为L的平行极板D和E间的区域,当极板间不加偏转电压时,电子束打在荧光屏的中心O'点,形成一个亮点;若在D、E间加上方向向下、场强为E的匀强电场,电子将向上偏转;如果再利用通电线圈在D、E电场区加上一垂
直纸面的匀强磁场(图中未画出),调节磁场的强弱,当磁感应强度的大小为B时,荧光斑恰好回到荧光屏中心。接着再去掉电场,电子向下偏转,偏转角为φ。如图所示,求(1)在图中画出磁场B的方向(2)根据L、E、B和φ,推导电子的比荷的表达式。
在某介质中形成一列简谐横波,该横波上有相距4m的A、B两点,下图所示为A、B两质点的振动图象,若这列波的波长大于2m,求:这列波的波速。