已知函数f=" x" +
,
为常数,且
是奇函数且在区间
上是减函数.
(1)求的值; (2)判断
的奇偶性;
(3)函数在
上是增函数还是减函数?并证明之.
椭圆的中心是原点O,它的短轴长为,相应于焦点F(c,0)(
)的准线
与x轴相交于点A,|OF|=2|FA|,过点A的直线与椭圆相交于P、Q两点 .
(1)求椭圆的方程及离心率;
(2)若,求直线PQ的方程;
(3)设(
),过点P且平行于准线
的直线与椭圆相交于另一点M,证明
.
一条变动的直线L与椭圆+
=1交于P、Q两点,M是L上的动点,满足关系|MP|·|MQ|=2.若直线L在变动过程中始终保持其斜率等于1.求动点M的轨迹方程,并说明曲线的形状.
椭圆>
>
与直线
交于
、
两点,且
,其中
为坐标原点.
(1)求的值;
(2)若椭圆的离心率满足
≤
≤
,求椭圆长轴的取值范围.
过椭圆引两条切线PA、PB、A、B为切点,如直线AB与x轴、y轴交于M、N两点.
(1)若,求P点坐标;
(2)求直线AB的方程(用表示);
(3)求△MON面积的最小值.(O为原点)。
已知A、B为椭圆+
=1上两点,F2为椭圆的右焦点,若|AF2|+|BF2|=
a,AB中点到椭圆左准线的距离为
,求该椭圆方程.