如图,A地到火车站共有两条路径L1,L2,现随机抽取100位从A地到火车站的人进行调查,结果如下:
所用时间(min) |
10~20 |
20~30 |
30~40 |
40~50 |
50~60 |
选择L1人数 |
6 |
12 |
18 |
12 |
12 |
选择L2人数 |
0 |
4 |
16 |
16 |
4 |
(1)试估计40 min内不能赶到火车站的概率
(2)现甲有40 min时间赶往火车站,为尽最大可能在允许的时间内赶到火车站,试通过计算说明,他如何选路径
本题共有3小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分.
已知无穷等比数列公比为
,各项的和等于9,数列
各项的和为
.对给定的
,设
是首项为
,公差为
的等差数列.
(1)求数列的通项
;
(2)求数列的前10项之和;
(3)设为数列
的第
项,
,求正整数
,使得
存在且不等于零.
本题共有3小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分.
已知椭圆的中心在坐标原点,焦点在
轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点
与
轴不垂直的直线交椭圆于
两点.
(1)求椭圆的方程;
(2)当直线的斜率为1时,求
的面积;
(3)在线段上是否存在点
,使得以
为邻边的平行四边形是菱形?若存在,求出
的取值范围;若不存在,请说明理由.
本题共有2小题,第(1)小题满分6分,第(2)小题满分8分.
为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用(单位:万元)与隔热层厚度
(单位:cm)满足关系:
,若不建隔热层,每年能源消耗费用为8万元,设
为隔热层建造费用与20年的能源消耗费用之和.
(1)求的值及
的表达式;
(2)隔热层修建多厚时,总费用达到最小,并求最小值.
本题共有2小题,第(1)小题满分6分,第(2)小题满分8分.
如图,在长方体中,
,
,点
在棱
上移动.
(1)证明:;
(2)等于何值时,二面角
的大小为
.
本题共有2小题,第(1)小题满分6分,第(2)小题满分6分.
已知函数.
(1)化简并求函数的最小正周期;
(2)求使函数取得最大值的
集合.