某学校举行知识竞赛,第一轮选拔共设有四个问题,规则如下:
① 每位参加者计分器的初始分均为10分,答对问题分别加1分、2分、3分、6分,答错任一题减2分;
② 每回答一题,计分器显示累计分数,当累计分数小于8分时,答题结束,淘汰出局;当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局,当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局;
③ 每位参加者按问题顺序作答,直至答题结束.
假设甲同学对问题回答正确的概率依次为
,且各题回答正确与否相互之间没有影响.
(Ⅰ)求甲同学能进入下一轮的概率;
(Ⅱ)用表示甲同学本轮答题结束时答题的个数,求
的分布列和数学的
.
已知在的展开式中,第6项
为常数项.
(1)求n;
(2)求展开式中所有的有理项.
某射手击中目标的概率为0.8,每次射击的结果相互独立,现射击10次,问他最有可能射中几次?
已知函数.
(1)若在
上的最大值为
,求实数
的值;
(2)若对任意,都有
恒成立,求实数
的取值范围;
(3)在(1)的条件下,设,对任意给定的正实数
,曲线
上是否存在两点
、
,使得
是以
(
为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在
轴上?请说明理由。
已知中心在坐标原点焦点在轴上的椭圆C,其长轴长等于4,离心率为
.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点(0,1), 问是否存在直线
与椭圆
交于
两点,且
?若存在,求出
的取值范围,若不存在,请说明理由.
已知函数.
(1)证明函数的图像关于点
对称;
(2)若,求
;
(3)在(2)的条件下,若,
为数列
的前
项和,若
对一切
都成立,试求实数
的取值范围.