游客
题文

某学校举行知识竞赛,第一轮选拔共设有四个问题,规则如下:
① 每位参加者计分器的初始分均为10分,答对问题分别加1分、2分、3分、6分,答错任一题减2分;
② 每回答一题,计分器显示累计分数,当累计分数小于8分时,答题结束,淘汰出局;当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局,当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局;
③ 每位参加者按问题顺序作答,直至答题结束.
假设甲同学对问题回答正确的概率依次为,且各题回答正确与否相互之间没有影响.
(Ⅰ)求甲同学能进入下一轮的概率;
(Ⅱ)用表示甲同学本轮答题结束时答题的个数,求的分布列和数学的.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

已知在的展开式中,第6项为常数项.
(1)求n;
(2)求展开式中所有的有理项.

某射手击中目标的概率为0.8,每次射击的结果相互独立,现射击10次,问他最有可能射中几次?

已知函数.
(1)若上的最大值为,求实数的值;
(2)若对任意,都有恒成立,求实数的取值范围;
(3)在(1)的条件下,设,对任意给定的正实数,曲线上是否存在两点,使得是以为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上?请说明理由。

已知中心在坐标原点焦点在轴上的椭圆C,其长轴长等于4,离心率为
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点(0,1), 问是否存在直线与椭圆交于两点,且?若存在,求出的取值范围,若不存在,请说明理由.

已知函数
(1)证明函数的图像关于点对称;
(2)若,求
(3)在(2)的条件下,若为数列的前项和,若对一切都成立,试求实数的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号