已知中心在坐标原点焦点在轴上的椭圆C,其长轴长等于4,离心率为
.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点(0,1), 问是否存在直线
与椭圆
交于
两点,且
?若存在,求出
的取值范围,若不存在,请说明理由.
第届亚运会于
年
月
日至
日在中国广州进行,为了做好接待工作,组委会招募了
名男志愿者和
名女志愿者,调查发现,男、女志愿者中分别有
人和
人喜爱运动,其余不喜爱.
根据以上数据完成以下列联表:
喜爱运动 |
不喜爱运动 |
总计 |
|
男 |
10 |
16 |
|
女 |
6 |
14 |
|
总计 |
30 |
(2)能否在犯错误的概率不超过的前提下认为性别与喜爱运动有关?
(3)如果从喜欢运动的女志愿者中(其中恰有人会外语),抽取
名负责翻译工作,则抽出的志愿者中
人都能胜任翻译工作的概率是多少?
附:K2=
P(K2≥k) |
0.100 |
0.050 |
0.025 |
0.010 |
0.001 |
k |
2.706 |
3.841 |
5.024 |
6.635 |
10.828 |
已知a+b>0,用分析法证明:≥
(a+b).
已知a,b,c是全不相等的正实数,求证
已知;
, 若p是q的充分非必要条件,求实数
的取值范围。
已知复数满足
为实数(
为虚数单位),且
,求
.