第届亚运会于
年
月
日至
日在中国广州进行,为了做好接待工作,组委会招募了
名男志愿者和
名女志愿者,调查发现,男、女志愿者中分别有
人和
人喜爱运动,其余不喜爱.
根据以上数据完成以下列联表:
|
喜爱运动 |
不喜爱运动 |
总计 |
男 |
10 |
|
16 |
女 |
6 |
|
14 |
总计 |
|
|
30 |
(2)能否在犯错误的概率不超过的前提下认为性别与喜爱运动有关?
(3)如果从喜欢运动的女志愿者中(其中恰有 人会外语),抽取
名负责翻译工作,则抽出的志愿者中
人都能胜任翻译工作的概率是多少?
附:K2=
P(K2≥k) |
0.100 |
0.050 |
0.025 |
0.010 |
0.001 |
k |
2.706 |
3.841 |
5.024 |
6.635 |
10.828 |
(本小题满分12分) 已知关于的不等式
的解集为
.
(1)求实数的值;
(2)解关于的不等式:
(
为常数).
(本小题满分10分)已知命题:方程
表示焦点在
轴上的椭圆;命题
:点
在圆
内.若
为真命题,
为假命题,试求实数
的取值范围.
已知椭圆C:的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线
与以椭圆C的右焦点为圆心,以
为半径的圆相切.
(1)求椭圆的方程.
(2)若过椭圆的右焦点
作直线
交椭圆
于
两点,交y轴于
点,且
求证:
为定值
(本小题满分13分)(理科做)在如图所示的多面体中,底面BCFE是梯形,EF//BC,又EF平面AEB,AE
EB,AD//EF,BC=2AD=4,EF=3,AE=BE=2,G为BC的中点.
(1)求证:AB//平面DEG;
(2)求证:BDEG;
(3)求二面角C—DF—E的正弦值.
(文科做)已知.
(1)若,求曲线
在点
处的切线方程;
(2)若求函数
的单调区间.
(本小题满分8分)已知圆C:,直线
与圆C交于P、Q两个不同的点,M为P、Q的中点.
(Ⅰ)已知,若
,求实数
的值;
(Ⅱ)求点M的轨迹方程;