(满分12分)
对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.
已知函数f(x)=ax2+(b+1)x+b-1(a≠0).
(1)当a=1,b=-2时,求f(x)的不动点;
(2)若对于任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围.
已知椭圆上一点
与椭圆的两个焦点
的连线互相垂直.
(1)求离心率和准线方程;
(2)求的面积.
已知命题“方程
表示焦点在
轴上的椭圆”,
命题“方程
表示双曲线”.
(1)若是真命题,求实数
的取值范围;
(2)若是真命题,求实数
的取值范围;
(3)若“”是真命题,求实数
的取值范围.
已知双曲线C的方程为:
(1)求双曲线C的离心率;
(2)求与双曲线C有公共的渐近线,且经过点A()的双曲线的方程。
定义在(0,+∞)上的函数f(x),对于任意的m,n∈(0,+∞),都有f(mn)=f(m)+f(n)成立,当x>1时,f(x)<0.
(1)求证:1是函数f(x)的零点;
(2)求证:f(x)是(0,+∞)上的减函数;
(3)当f (2)= 时,解不等式f (ax+4)>1.
当满足
时,求函数
的最值及相应的
的值.