已知中心在原点,对称轴为坐标轴的椭圆与直线x+y=3相交于A、B两点,C是AB的中点,若|AB|=2,O是坐标原点,OC的斜率为2,求椭圆的方程.
设椭圆=1的焦点为F1、F2,P是椭圆上任意一点,一条斜率为
的直线交椭圆于A、B两点,如果当a变化时,总可同时满足:
①∠F1PF2的最大值为;
②直线l:ax+y+1=0平分线段AB.
求a的取值范围.
以椭圆+y2=1(a>1)短轴的一个端点B(0,1)为直角顶点作椭圆的内接等腰直角三角形,问这样的直角三角形是否存在?如果存在,请说明理由,并判断最多能作出几个这样的三角形;如果不存在,请说明理由.
已知椭圆中心在原点,焦点在横轴上,焦距为4,且和直线3x+2
y-16=0相切,求椭圆方程.
给定四条曲线:①x2+y2=;②
+
=1;③x2+
=1;④
+y2=1.其中与直线x+y-5=0仅有一个交点的曲线是()
A.①②③ | B.②③④ | C.①②④ | D.①③④ |