游客
题文

(本小题满分13分)设直线x=1是函数f(x)的图像的一条对称轴,对于任意,f(x+2)="--" f(x),当.
(1)证明:f(x)在R上是奇函数;
(2)当时,求f(x)的解析式。

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知函数其中常数
(1)当时,求函数的单调递增区间;
(2)当时,给出两类直线:,其中为常数,判断这两类直线中是否存在的切线,若存在,求出相应的的值,若不存在,说明理由.
(3)设定义在上的函数在点处的切线方程为,当内恒成立,则称为函数的“类对称点”,当时,试问是否存在“类对称点”,若存在,请至少求出一个“类对称点”的横坐标,若不存在,说明理由.

已知中心在原点的椭圆的一个焦点为为椭圆上一点,的面积为
(1)求椭圆的方程;
(2)是否存在平行于的直线,使得直线与椭圆相交于两点,且以线段为有经的圆恰好经过原点?若存在,求出的方程,若不存在,说明理由.

已知函数
(1)试确定的范围,使得函数上是单调函数;
(2)求上的最值.

如图,已知直角梯形所在的平面垂直于平面
(1)的中点为,求证∥面
(2)求平面与平面所成的锐二面角的余弦值

已知等差数列的公差大于0,且是方程的两根,数列的前项和为,且
(1)求数列的通项公式;
(2)若,求数列的前项和

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号