(本小题满分13分)设直线x=1是函数f(x)的图像的一条对称轴,对于任意,f(x+2)="--" f(x),当
.
(1)证明:f(x)在R上是奇函数;
(2)当时,求f(x)的解析式。
(本小题满分12分)已知集合,集合
.
(1)若,求
和
;
(2)若,求实数
的取值范围.
(本小题满分12分)已知且
,
.
(Ⅰ)求;
(Ⅱ)判断函数的奇偶性与单调性;
(Ⅲ)对于,当
时 , 有
,求实数
的集合
.
(本小题满分12分)设二次函数的图象过点(0,1)和(1,4),且对于任意的实数
,不等式
恒成立.
(Ⅰ)求函数的表达式;
(Ⅱ)设,若
在区间[1,2]上是增函数,求实数
的取值范围.
(本小题满分12分)某厂生产一种产品的固定成本(即固定投入)为0.5万元,但每生产一百件这样的产品,需要增加可变成本(即另增加投入)0.25万元. 市场对此产品的年需求量为500件,销售的收入函数为(单位:万元),其中
是产品售出的数量(单位:百件).
(Ⅰ)该公司这种产品的年产量为百件,生产并销售这种产品所得到的利润为当年产量
的函数,求
;
(Ⅱ)当年产量是多少时,工厂所得利润最大?
(Ⅲ)当年产量是多少时, 工厂才不亏本?
(本小题满分12分)定义在R上的函数满足:对任意实数
,总有
,且当
时,
.
(Ⅰ)试求的值;
(Ⅱ)判断的单调性并证明你的结论.