(本题12分)某汽车厂有一条价值为万元的汽车生产线,现要通过技术改造来提高该生产线的生产能力,提高产品的增加值,经过市场调查,产品的增加值
万元与技术改造投入
万元之间满足:①
与
成正比;②当
时,
,并且技术改造投入满足
,其中
为常数且
。
(1)求表达式及定义域;
(2)求出产品增加值的最大值及相应的值。
已知函数在
轴上的截距为1,且曲线上一点
处的切线斜率为
.(1)曲线在P点处的切线方程;(2)求函数
的极大值和极小值
(本题14分)
已知函数R).
(1)若曲线在点
处的切线与直线
平行,求
的值;
(2)在(1)条件下,求函数的单调区间和极值;
(3)当,且
时,证明:
(本题13分)
已知数列和
满足:
,
,
其中
为实数,
为正整数.
(Ⅰ)对任意实数,证明数列
不是等比数列;
(Ⅱ)试判断数列是否为等比数列,并证明你的结论;
(本题12分)
某民营企业生产A、B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图一所示;B产品的利润与投资的算术平方根成正比,其关系如图二所示(利润与投资单位:万元).
(1)分别将A、B两种产品的利润表示为投资的函数关系式;
(2)该企业已筹集到10万元资金,并全部投入A、B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元?
(本题12分)
研究问题:“已知关于的不等式
的解集为
,解关于
的不等式
”,有如下解法:
解:由,令
,则
,
所以不等式的解集为
.
参考上述解法,已知关于的不等式
的解集为
,求关于
的不等式
的解集.