某小型自来水厂的蓄水池中存有水400吨水,水厂每小时可向蓄水池中注入自来水60吨。若蓄水池向居民小区不间断地供水,且
小时内供水总量为
吨(
)。⑴供水开始几小时后,蓄水池中的水量最小?最小水量为多少吨?⑵若蓄水池中的水量少于80吨,就会出现供水紧张现象,试问在一天的24小时内,有多少小时会出现供水紧张现象?并说明理由。
在抛物线y2=16x内,通过点(2,1)且在此点被平分的弦所在直线的方程是_________
设椭圆的中心在原点,坐标轴为对称轴, 一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为-4,求此椭圆方程、离心率、准线方程及准线间的距离.
如图,已知椭圆的中心在坐标原点,焦点F1,F2在x轴上,长轴A1A2的长为4,左准线l与x轴的交点为M,|MA1|∶|A1F1|=2∶1.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线l1:x=m(|m|>1),P为l1上的动点,使∠F1PF2最大的点P记为Q,求点Q的坐标(用m表示).
已知椭圆C的中心在原点,左焦点为F1,其右焦点F2和右准线分别是抛物线的顶点和准线.
⑴求椭圆C的方程;
⑵若点P为椭圆上C的点,△PF1F2的内切圆的半径为,求点P到x轴的距离;
⑶若点P为椭圆C上的一个动点,当∠F1PF2为钝角时求点P的取值范围.
已知双曲线的方程为, 直线
通过其右焦点F2,且与双曲线的右支交于A、B两点,将A、B与双曲线的左焦点F1连结起来,求|F1A|·|F1B|的最小值