如图,已知椭圆的中心在坐标原点,焦点F1,F2在x轴上,长轴A1A2的长为4,左准线l与x轴的交点为M,|MA1|∶|A1F1|=2∶1.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线l1:x=m(|m|>1),P为l1上的动点,使∠F1PF2最大的点P记为Q,求点Q的坐标(用m表示).
为了解某市的交通状况,现对其6条道路进行评估,得分分别为:5,6,7,8,9,10.规定评估的平均得分与全市的总体交通状况等级如下表:
评估的平均得分 |
![]() |
![]() |
![]() |
全市的总体交通状况等级 |
不合格 |
合格 |
优秀 |
(1)求本次评估的平均得分,并参照上表估计该市的总体交通状况等级;
(2)用简单随机抽样方法从这条道路中抽取
条,它们的得分组成一个样本,求该样本的平均数与总体的平均数之差的绝对值不超过
的概率.
已知函数.
(1)求函数的单调增区间;
(2)在中,
分别是角
的对边,且
,求
的面积.
设函数.
(1)求的单调区间;
(2)当时,若方程
在
上有两个实数解,求实数
的取值范围;
(3)证明:当时,
.
已知椭圆的短半轴长为
,动点
在直线
(
为半焦距)上.
(1)求椭圆的标准方程;
(2)求以为直径且被直线
截得的弦长为
的圆的方程;
(3)设是椭圆的右焦点,过点
作
的垂线与以
为直径的圆交于点
,
求证:线段的长为定值,并求出这个定值.
一个口袋中有个白球和
个红球(
,且
),每次从袋中摸出两个球(每次摸球后把这两个球放回袋中),若摸出的两个球颜色相同为中奖,否则为不中奖.
(1)试用含的代数式表示一次摸球中奖的概率
;
(2)若,求三次摸球恰有一次中奖的概率;
(3)记三次摸球恰有一次中奖的概率为,当
为何值时,
取最大值.