一个口袋中有个白球和个红球(,且),每次从袋中摸出两个球(每次摸球后把这两个球放回袋中),若摸出的两个球颜色相同为中奖,否则为不中奖.(1)试用含的代数式表示一次摸球中奖的概率;(2)若,求三次摸球恰有一次中奖的概率;(3)记三次摸球恰有一次中奖的概率为,当为何值时,取最大值.
已知x,y,z∈R+,且x+y+z=1 (1)若2x2+3y2+6z2=1,求x,y,z的值. (2)若2x2+3y2+tz2≥1恒成立,求正数t的取值范围.
已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-1,1]. (1)求m的值; (2)若a,b,c∈R,且=m,求证:a+2b+3c≥9.
已知正数a、b、c满足abc=1,求证:(a+2)(b+2)(c+2)≥27.
设a、b、c均为正数,且a+b+c=1.证明: (1)ab+bc+ca≤;(2)≥1
已知a≥b>0,求证:2a3-b3≥2ab2-a2b.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号