(本小题满分12分)某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如右图所示.
(1)下表是年龄的频数分布表,求正整数的值;
区间 |
[25,30) |
[30,35) |
[35,40) |
[40,45) |
[45,50] |
人数 |
50 |
50 |
![]() |
150 |
![]() |
(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?
(3)在(2)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.
选修4-4:坐标系与参数方程
已知曲线的极坐标方程是
,以极点为原点,极轴为
轴的正半轴建立平面直角坐标系,直线
的参数方程为
(
为参数),
(1)写出直线的普通方程与曲线
的直角坐标方程;
(2)设曲线经过伸缩变换
后得到曲线
,设
为
上任意一点,求
的最小值,并求相应的点
的坐标.
几何证明选讲
如图,是
的切线,
过圆心
,
为
的直径,
与
相交于
、
两点,连结
、
.
(1)求证:;
(2)求证:.
已知函数(
为常数),其图象是曲线
.
(1)当时,求函数
的单调减区间;
(2)设函数的导函数为
,若存在唯一的实数
,使得
与
同时成立,求实数
的取值范围;
(3)已知点为曲线
上的动点,在点
处作曲线
的切线
与曲线
交于另一点
,在点
处作曲线
的切线
,设切线
的斜率分别为
.问:是否存在常数
,使得
?若存在,求出
的值;若不存在,请说明理由.
如图,在平面直角坐标系中,椭圆
的离心率为
,直线
与
轴交于点
,与椭圆
交于
、
两点.当直线
垂直于
轴且点
为椭圆
的右焦点时, 弦
的长为
.
(1)求椭圆的方程;
(2)若点的坐标为
,点
在第一象限且横坐标为
,连结点
与原点
的直线交椭圆
于另一点
,求
的面积;
(3)是否存在点,使得
为定值?若存在,请指出点
的坐标,并求出该定值;若不存在,请说明理由.
如图,在三棱锥中,
底面
,
,且
,点
是
的中点,
且交
于点
.
(1)求证:平面
;
(2)当时,求三棱锥
的体积.