游客
题文

如图,在平面直角坐标系中,椭圆的离心率为,直线轴交于点,与椭圆交于两点.当直线垂直于轴且点为椭圆的右焦点时, 弦的长为

(1)求椭圆的方程;
(2)若点的坐标为,点在第一象限且横坐标为,连结点与原点的直线交椭圆于另一点,求的面积;
(3)是否存在点,使得为定值?若存在,请指出点的坐标,并求出该定值;若不存在,请说明理由.

科目 数学   题型 解答题   难度 困难
登录免费查看答案和解析
相关试题

选修4—4:坐标系与参数方程。
在平面直角坐标系xOy中,已知曲线,以平面直角坐标系xOy
的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线
(1)将曲线上的所有点的横坐标、纵坐标分别伸长为原来的、2倍后得到曲线试写出直线的直角坐标方程和曲线的参数方程;
(2)在曲线上求一点P,使点P到直线的距离最大,并求出此最大值.

选修4-1:几何证明选讲
如图所示,已知PA与⊙O相切,A为切点,PBC为割线,弦CD∥AP,AD、BC相交于E点,F为CE上一点,且DE2=EF·EC.

(1)求证:ÐP=ÐEDF;
(2)求证:CE·EB=EF·EP.

(本小题满分12分)已知二次函数f(x)=ax2+bx+c.
(1)若f(-1)=0,试判断函数f(x)零点的个数;
(2)是否存在a,b,c∈R,使f(x)同时满足以下条件:
①对任意x∈R,f(-1+x)=f(-1-x),且f(x)≥0;
②对任意x∈R,都有0≤f(x)-x≤(x-1)2.若存在,求出a,b,c的值;若不存在,请说
明理由。
(3)若对任意x1、x2∈R且x1<x2,f(x1)≠f(x2),试证明:存在x0∈(x1,x2),使f(x0)=[f(x1)+f(x2)]成立。

(本小题满分12分)
函数f(x)=x2-2x+2在闭区间[t,t+1](t∈R)上的最小值为g(t).
(1)试写出g(t)的表达式;
(2)作g(t)的图象并写出g(t)的最小值。

(本小题满分12分)
设函数f(x)=是奇函数(a,b,c都是整数)且f(1)=2,f(2)<3
(1)求a,b,c的值;
(2)当x<0,f(x)的单调性如何?用单调性定义证明你的结论。
(3)当x>0时,求函数f(x)的最小值。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号