(本小题满分13分)f(x)为定义在R上的偶函数,但x≥0时,y= f(x)的图像是顶点在P(3,4),且过点A(2,2)的抛物线的一部分。
(1)求函数f(x)在(-∞,0)上的解析式;
(2)求函数f(x)在R上的解析式,并画出函数f(x)的图像;
(3)写出函数f(x)的单调区间
在直角坐标系
中,点
到两点
的距离之和等于4,设点
的轨迹为
,直线
与
交于
两点.
(Ⅰ)写出
的方程;
(Ⅱ)若
,求
的值;
(Ⅲ)若点
在第一象限,证明:当
时,恒有
.
如图,在棱长为1的正方体
中,
,截面
,截面
.
(Ⅰ)证明:平面
和平面
互相垂直;
(Ⅱ)证明:截面
和截面
面积之和是定值,
并求出这个值;
(Ⅲ)若
与平面
所成的角为
,求
与平
面
所成角的正弦值.
某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:
(Ⅰ)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;
(Ⅱ)已知每吨该商品的销售利润为2千元,
表示该种商品两周销售利润的和(单位:千元).若以上述频率作为概率,且各周的销售量相互独立,求
的分布列和数学期望.
在
中,内角
对边的边长分别是
,已知
.
(Ⅰ)若
的面积等于
,求
;
(Ⅱ)若
,求
的面积.
已知曲线
是到点
和到直线
距离相等的点的轨迹,
是过点
的直线是
上(不在
上)的动点;
、
在
上,
,
轴(如图).
(Ⅰ)求曲线
的方程;
(Ⅱ)求出直线
的方程,使得
为常数.