(本小题满分12分)已知椭圆的离心率为,焦点到相应准线的距离为(1)求椭圆C的方程(2)设直线与椭圆C交于A、B两点,坐标原点到直线的距离为,求面积的最大值。
已知函数定义在(―1,1)上,对于任意的,有,且当时,。 (1)验证函数是否满足这些条件; (2)判断这样的函数是否具有奇偶性和单调性,并加以证明; (3)若,求方程的解。
为了绿化城市,准备在如图所示的区域DFEBC内修建一个矩形PQRC的草坪,且PQ∥BC,RQ⊥BC,另外△AEF的内部有一文物保护区不能占用,经测量AB=100m,BC=80m,AE=30m,AF=20m。应如何设计才能使草坪的占地面积最大?
已知定义域为,值域为[-5,1],求实数的值。
正三角形ABC的边长为1,且,求的值。
已知向量,函数求函数的最小正周期T及值域
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号