如图,四棱锥P—ABCD的底面ABCD为一直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中点.(Ⅰ)求证:BE//平面PAD;(Ⅱ)若BE⊥平面PCD。(i)求异面直线PD与BC所成角的余弦值;(ii)求二面角E—BD—C的余弦值.
设函数. (1)若时函数有三个互不相同的零点,求的取值范围; (2)若函数在内没有极值点,求的取值范围; (3)若对任意的,不等式在上恒成立,求实数的取值范围.
经过长期观测得到:在交通繁忙的时段内某公路汽车的车流量y(千辆/时)与汽车的平均速度v(千米/时)之间的函数关系为 (1)在该时段内,当汽车的平均速度v为多少时,车流量最大?最大车流量是多少(精确到0.1千辆/时)? (2)若要求在该时段内车流量超过10千辆/时,则汽车的平均速度应该在什么范围内?
设、b是满足的实数,其中. (1)求证:;(2)求证:.
已知,且,求证:
已知、y为正数,且, 求x+y的最小值。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号