(本小题满分13分)
已知,
,
,…,
.
(Ⅰ)请写出的表达式(不需证明);
(Ⅱ)求的极小值
;
(Ⅲ)设,
的最大值为
,
的最小值为
,试求
的最小值.
在中,AB=AC,过点A的直线与其外接圆交于点P,交BC延长线于点D。
(1)求证: ;
(2)若AC=3,求的值。
已知函数
(Ⅰ)若曲线在
和
处的切线互相平行,求
的值及函数
的单调区间;
(Ⅱ)设,若对任意
,均存在
,使得
,求实数
的取值范围.
如图,已知圆C与y轴相切于点T(0,2),与x轴正半轴相交于两点M,N (点M在点N的右侧),且。椭圆D:
的焦距等于
,且过点
( I ) 求圆C和椭圆D的方程;
(Ⅱ) 若过点M的动直线与椭圆D交于A、B两点,若点N在以弦AB为直径的圆的外部,求直线
斜率的范围。
高三年级有3名男生和1名女生为了报某所大学,事先进行了多方详细咨询,并根据自己的高考成绩情况,最终估计这3名男生报此所大学的概率都是,这1名女生报此所大学的概率是
.且这4人报此所大学互不影响。
(Ⅰ)求上述4名学生中报这所大学的人数中男生和女生人数相等的概率;
(Ⅱ)在报考某所大学的上述4名学生中,记为报这所大学的男生和女生人数的和,试求
的分布列和数学期望.
在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,侧棱AA1⊥面ABC,D、E分别是棱A1B1、AA1的中点,点F在棱AB上,且.
(Ⅰ)求证:EF∥平面BDC1;
(Ⅱ)求二面角E-BC1-D的余弦值.