游客
题文

(本小题满分13分)
已知,…,.
(Ⅰ)请写出的表达式(不需证明);
(Ⅱ)求的极小值
(Ⅲ)设的最大值为的最小值为,试求的最小值.

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A,点B、D在直线l1上(B、D 位于点A右侧),且|AB|=4,|AD|=1,M是该平面上的一个动点,M在l1上的射影点是N,且|BN|=2|DM|.
(Ⅰ) 建立适当的坐标系,求动点M的轨迹C的方程.
(Ⅱ)过点D且不与l1、l2垂直的直线l交(Ⅰ)中的轨迹C于E、F两点;另外平面上的点G、H满足:①求点G的横坐标的取值范围.

是定义在R上的偶函数,其图象关于直线对称,证明是周期函数.

在直角坐标平面中,的两个顶点分别的坐标为,平面内两点同时满足下列条件:
;②;③
(1)求的顶点的轨迹方程;
(2)过点的直线与(1)中轨迹交于两点,求的取值范围

如图所示,B(– c,0),C(c,0),AH⊥BC,垂足为H,且
(1)若= 0,求以B、C为焦点并且经过点A的椭圆的离心率;
(2)D分有向线段的比为,A、D同在以B、C为焦点的椭圆上,当 ―5≤时,求椭圆的离心率e的取值范围.

分别为轴、轴上的点,且,动点满足:.
(1)求动点的轨迹的方程;
(2)过定点任意作一条直线与曲线交与不同的两点,问在轴上是否存在一定点,使得直线的倾斜角互补?若存在,求出点的坐标;若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号