定义在R上的单调函数满足
,且对于任意的
,
都有.
(1)求证:为奇函数;
(2)若对任意的
恒成立,求实数
的取值范围.
如图,在平面四边形 中, .
(1)求
的值;
(2)求
的长
如图,已知二面角
的大小为
,菱形
在面
内,
两点在棱
上,
,
是
的中点,
面
,垂足为
.
(1)证明:
平面
;
(2)求异面直线
与
所成角的余弦值.
某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:
, , , , , , , ,
, , , , , ,
其中
分别表示甲组研发成功和失败;
分别表示乙组研发成功和失败.
(1)若某组成功研发一种新产品,则给改组记1分,否记0分,试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;
(2)若该企业安排甲、乙两组各自研发一种新产品,试估算恰有一组研发成功的概率.,
已知数列
的前
项和
.
(1)求数列
的通项公式;
(2)设
,求数列
的前
项和.
在平面直角坐标系
中,点
到点
的距离比它到
轴的距离多1,记点
的轨迹为
.
(1)求轨迹为
的方程
(2)设斜率为
的直线
过定点
,求直线
与轨迹
恰好有一个公共点,两个公共点,三个公共点时
的相应取值范围.