(14分)在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.
(Ⅰ)求四棱锥P-ABCD的体积V;
(Ⅱ)若F为PC的中点,求证PC⊥平面AEF;
(Ⅲ)求证CE∥平面PAB.
已知函数
的定义域为
,
(1)求
;
(2)若
,且
,求实数
的取值范围.
若函数
为定义域
上的单调函数,且存在区间
(其中
,使得当
时,
的取值范围恰为
,则称函数
是
上的正函数,区间
叫做函数的等域区间.
(1)已知
是
上的正函数,求
的等域区间;
(2)试探求是否存在
,使得函数
是
上的正函数?若存在,请求出实数
的取值范围;若不存在,请说明理由.
已知函数
,恒过定点
.
(1)求实数
;
(2)在(1)的条件下,将函数
的图象向下平移1个单位,再向左平移
个单位后得到函数
,设函数
的反函数为
,直接写出
的解析式;
(3)对于定义在
上的函数
,若在其定义域内,不等式
恒成立,求实数
的取值范围.
一种放射性元素,最初的质量为
,按每年
衰减.
(1)求
年后,这种放射性元素的质量
与
的函数关系式;
(2)求这种放射性元素的半衰期(质量变为原来的
时所经历的时间).(
)
已知集合
,集合
.
(1)若
,求
;
(2)若
,求
的取值范围.