已知正三棱柱的侧棱长和底面边长均为2, N为侧棱
上的点,若平面
与平面
所成二面角(锐角)的余弦值为
,试确定点N的位置。
某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为,中奖可以获得2分;方案乙的中奖率为
,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.
(1)张三选择方案甲抽奖,李四选择方案乙抽奖,记他们的累计得分为X,若X≤3的概率为,求
;
(2)若张三、李四两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?
在如图所示的几何体中,平面
,
∥
,
是
的中点,
,
.
(1)证明:∥平面
;
(2)求二面角的大小的余弦值.
已知函数.
(1)求函数f (x)的最小正周期;
(2)在△ABC中,角A,B,C的对边分别是a,b,c,且满足,求f(B)的取值范围.
已知数列的各项均为正数,记
,
,
.
(1)若,且对任意
,三个数
组成等差数列,求数列
的通项公式.
(2)证明:数列是公比为
的等比数列的充分必要条件是:对任意
,三个数
组成公比为
的等比数列.
已知椭圆的左右焦点分别为
,点
为短轴的一个端点,
.
(1)求椭圆的方程;
(2)如图,过右焦点,且斜率为
的直线
与椭圆
相交于
两点,
为椭圆的右顶点,直线
分别交直线
于点
,线段
的中点为
,记直线
的斜率为
.
求证: 为定值.