(本小题满分12分)已知函数.
(I)若函数在
上为增函数,求正实数
的取值范围;
(II)当时,求
在
上的最大值和最小值;
(III)当时,求证:对大于1的任意正整数
,都有
已知抛物线y2=8x上两个动点A、B及一个定点M(x0, y0),F是抛物线的焦点,且|AF|、|MF|、|BF|成等差数列,线段AB的垂直平分线与x轴交于一点N.
(1)求点N的坐标(用x0表示);
(2)过点N与MN垂直的直线交抛物线于P、Q两点,若|MN|=4,求△MPQ的面积.
(本小题满分12分)在直角坐标系xOy中,曲线C1的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值.
(1)求曲线C1的方程;
(2)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于
点A,B和C,D.证明:当P在直线x=﹣4上运动时,四点A,B,C,D的纵坐标之积为定值.
(本小题满分12分)已知顶点在坐标原点,焦点在轴正半轴的抛物线上有一点
,
点到抛物线焦点的距离为1.(1)求该抛物线的方程;(2)设
为抛物线上的一个定点,过
作抛物线的两条互相垂直的弦
,
,求证:
恒过定点
.(3)直线
与抛物线交于
,
两点,在抛物线上是否存在点
,使得△
为以
为斜边的直角三角形.
(本小题满分12分)已知椭圆的离心率为
,定点
,椭圆短轴的端点是
,
,且
.
(1)求椭圆的方程;
(2)设过点且斜率不为
的直线交椭圆
于
,
两点.试问
轴上是否存在定点
,使
平分
?若存在,求出点
的坐标;若不存在,说明理由.
(本小题满分12分)如图,已知三棱柱的侧棱与底面垂直,
,
,
,
分别是
,
的中点,点
在直线
上,且
;
(1)证明:无论取何值,总有
;
(2)当取何值时,直线
与平面
所成的角
最大?并求该角取最大值时的正切值;
(3)是否存在点,使得平面
与平面
所成的二面角为30º,若存在,试确定点
的位置,若不存在,请说明理由.