游客
题文

(本题满分12分)若实数满足,则称接近.
(1)若比3接近0,求的取值范围;
(2)对任意两个不相等的正数,证明:接近
(3)已知函数的定义域.任取等于中接近0的那个值.写出函数的解析式,并指出它的奇偶性、最值和单调性(结论不要求证明).

科目 数学   题型 解答题   难度 较易
知识点: 高阶矩阵与特征向量
登录免费查看答案和解析
相关试题

(本小题12分)已知
(Ⅰ)若,求使函数为偶函数。
(Ⅱ)在(I)成立的条件下,求满足=1,∈[-π,π]的的集合。

(本小题满分14分)已知中心在坐标原点O,焦点在轴上,长轴长是短轴长的2倍的椭圆经过点M(2,1)
(Ⅰ)求椭圆的方程;
(Ⅱ)直线平行于,且与椭圆交于A、B两个不同点.
(ⅰ)若为钝角,求直线轴上的截距m的取值范围;
(ⅱ)求证直线MAMBx轴围成的三角形总是等腰三角形.

(本小题13分)已知.
(I)求的单调增区间;
(II)若在定义域R内单调递增,求的取值范围;
(III)是否存在,使在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出的值;若不存在,说明理由.

(本小题满分12分)已知数列的前n项和满足(>0,且)。数列满足
(I)求数列的通项。
(II)若对一切都有,求的取值范围。

(本小题满分12分)在直三棱柱(侧棱垂直底面)中,,且异面直线所成的角等于

(Ⅰ)求棱柱的高;
(Ⅱ)求与平面所成的角的大小.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号