(本小题满分14分)已知中心在坐标原点O,焦点在轴上,长轴长是短轴长的2倍的椭圆经过点M(2,1)
(Ⅰ)求椭圆的方程;
(Ⅱ)直线平行于
,且与椭圆交于A、B两个不同点.
(ⅰ)若为钝角,求直线
在
轴上的截距m的取值范围;
(ⅱ)求证直线MA、MB与x轴围成的三角形总是等腰三角形.
(本小题满分14分)已知向量=(
,1),向量
=(sin2x,cos2x),函数
(1)求函数的表达式,并作出函数
在一个周期内的简图(用五点法列表描点);
(2)求函数的周期,并写单调区间.
(本小题满分10分)若数列的前n项和为
,且方程
有一个根为
-1,n=1,2,3...
(1)求;
(2)猜想数列的通项公式,并用数学归纳法证明
(本小题满分10分)已知直三棱柱中,
,
是棱
的中点.如图所示.
(1)求证:平面
;
(2)求锐二面角的大小.
(本小题满分10分)已知圆C的极坐标方程为=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,若直线
与圆C相切.
求(1)圆C的直角坐标方程;
(2)实数k的值.
(本小题满分10分)已知函数f(x)=ln(2x-e), 点P(e,f(e))为函数的图像上一点
(1)求导函数的解析式;
(2)求f(x)=ln(2x-e)在点P(e,f(e))处的切线的方程.