2009年推出一款新型家用轿车,购买时费用为14.4万元,每年应交付保险费、 养路费及汽油费共0.7万元,汽车的维修费为:第一年无维修费用,第二年为0.2万元,从第三年起,每年的维修费均比上一年增加0.2万元.
(1)设该辆轿车使用n年的总费用(包括购买费用、保险费、养路费、汽油费及维修费)为f(n),求f(n)的表达式;
(2)这种汽车使用多少年报废最合算(即该车使用多少年,年平均费用最少)?
甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:
一级品 |
二级品 |
合计 |
|
甲机床 |
150 |
50 |
200 |
乙机床 |
120 |
80 |
200 |
合计 |
270 |
130 |
400 |
(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?
(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?
附:
|
0.050 |
0.010 |
0.001 |
k |
3.841 |
6.635 |
10.828 |
已知 , 函数 .
(1) 求曲线 在点 处的切线方程.
(2) 证明: 存在唯一的极值点.
(3) 若存在 , 使得 对任意 成立, 求实数 的取值范围.
已知数列 是公差为 2 的等差数列, 其前 8 项的和为 64 . 数列 是公比大于 0 的等比数列, ,
(1)求数列 和 的通项公式.
记 .
(1) 证明: 是等比数列.
(2) 证明: .
已知椭圆 的右焦点为 , 上顶点为 , 离心率为 , 且 .
(1) 求椭圆的方程.
(2) 直线 与椭圆有唯一的公共点 , 与 轴的正半轴交于点 . 过 与 垂直的直线交 轴于点 . 若 , 求直线 的方程.
如图, 在棱长为 2 的正方体 中, 分别为棱 的中点.
(1) 求证: .
(2) 求直线 与平面 所成角的正弦值.
(3) 求二面角 的正弦值.