游客
题文

编号为的16名篮球运动员在某次训练比赛中的得分记录如下:

运动员编号








得分
15
35
21
28
25
36
18
34
运动员编号








得分
17
26
25
33
22
12
31
38

 
(Ⅰ)将得分在对应区间内的人数填入相应的空格;

区间



人数
 
 
 

 
(Ⅱ)从得分在区间内的运动员中随机抽取2人,
(i)用运动员的编号列出所有可能的抽取结果;
(ii)求这2人得分之和大于50的概率.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

如图直角梯形OABC中,,SO=1,以OC、OA、OS分别为x轴、y轴、z轴建立直角坐标系O-xyz.
(Ⅰ)求的大小(用反三角函数表示);
(Ⅱ)设

②OA与平面SBC的夹角(用反三角函数表示);
③O到平面SBC的距离.
(Ⅲ)设
.
②异面直线SC、OB的距离为.
(注:(Ⅲ)只要求写出答案).

同时抛掷15枚均匀的硬币一次
(1)试求至多有1枚正面向上的概率;
(2)试问出现正面向上为奇数枚的概率与出现正面向上为偶数枚的概率是否相等?
请说明理由.

如图,设抛物线方程为 x 2 = 2 p y ( p > 0 ) , M 为直线 y = - 2 p 上任意一点,过 M 引抛物线的切线,切点分别为 A , B .

image.png

(Ⅰ)求证: A , M , B 三点的横坐标成等差数列;
(Ⅱ)已知当 M 点的坐标为 ( 2 , - 2 p ) 时, A B = 4 10 ,求此时抛物线的方程;
(Ⅲ)是否存在点 M ,使得点 C 关于直线 A B 的对称点 D 在抛物线 x 2 = 2 p y ( p > 0 ) 上,其中,点 C 满足 O C = O A + O B O 为坐标原点).若存在,求出所有适合题意的点 M 的坐标;若不存在,请说明理由.

双曲线M的中心在原点,并以椭圆的焦点为焦点,以抛物线的准线为右准线.
(Ⅰ)求双曲线M的方程;
(Ⅱ)设直线与双曲线M相交于A、B两点,O是原点.
① 当为何值时,使得?
② 是否存在这样的实数,使A、B两点关于直线对称?若存在,求出的值;若不存在,说明理由.

如图,在四棱锥中,底面是正方形,底面, 点的中点,,且交于点.
(I)求证:平面
(II)求二面角的余弦值大小;
(III)求证:平面⊥平面.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号