(本小题满分13分)
定义F(x,y)=(1+x)y,其中x,y∈(0,+∞).
(1)令函数f(x)=F(1,log2(x3+ax2+bx+1)),其图象为曲线C,若存在实数b使得曲线C在x0(-4<x0<-1)处有斜率为-8的切线,求实数a的取值范围;
(2)令函数g(x)=F(1,log2[(lnx-1)ex+x]),是否存在实数x0∈[1,e],使曲线y=g(x)在点x=x0处的切线与y轴垂直?若存在,求出x0的值;若不存在,请说明理由.
(3)当x,y∈N,且x<y时,求证:F(x,y)>F(y,x).
(本小题满分11分)已知,;
(1)试由此归纳出当时相应的不等式;
(2)试用数学归纳法证明你在第(1)小题得到的不等式.
(本小题满分11分)已知在的展开式中,第6项为常数项.
(1)求n;(2)求含x2的项的系数;(3)求展开式中所有的有理项.
(附加题)本题满分20分
如图,已知抛物线与圆
相交于A、B、C、D四个点。
(Ⅰ)求r的取值范围(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标。
甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束。假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。已知前2局中,甲、乙各胜1局。
(Ⅰ)求再赛2局结束这次比赛的概率;(Ⅱ)求甲获得这次比赛胜利的概率。
(Ⅰ)求 | z1| 的值以及z1的实部的取值范围;(Ⅱ)若,求证:
为纯虚数