(本小题满分13分)
定义F(x,y)=(1+x)y,其中x,y∈(0,+∞).
(1)令函数f(x)=F(1,log2(x3+ax2+bx+1)),其图象为曲线C,若存在实数b使得曲线C在x0(-4<x0<-1)处有斜率为-8的切线,求实数a的取值范围;
(2)令函数g(x)=F(1,log2[(lnx-1)ex+x]),是否存在实数x0∈[1,e],使曲线y=g(x)在点x=x0处的切线与y轴垂直?若存在,求出x0的值;若不存在,请说明理由.
(3)当x,y∈N,且x<y时,求证:F(x,y)>F(y,x).
提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:
当20≤x≤200时,车流速度v是车流密度x的一次函数.当0≤x≤200时,求函数v(x)的表达式.
袋中有个白球和
个黑球,每次从中任取
个球,每次取出黑球后不再放回去,直到取出白球为止.求取球次数
的分布列,并求
出
的期望值和方差.
已知函数 . (
1) 求函数
的定义域;(2) 求证
在
上是减函数;(3) 求函数
的值
域.
关于的不等式
在区间
上有解,求
的取值范围.
解不等式: