(本小题满分12分)某企业2005年的利润为500万元,因设备老化等原因,若不进行技术改造,预计企业利润将从2006年开始每年减少20万元。为此企业在2006年一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第年利润为
万元。
(1)若不进行技术改造,则从2006年起的前年的利润共
万元;若进行技术改造后,则从2006年起的前
年的纯利润(扣除技术改造600万元资金)共
万元,分别求
;
(2)依据预测,从2006年起至少经过多少年技术改造后的纯利润超过不改造的利润?
如图,正方形 和四边形 所在的平面互相垂直. .
(Ⅰ)求证:
平面
;
(Ⅱ)求证:
平面
;
已知 为等差数列,且 .
(Ⅰ)求
的通项公式;
(Ⅱ)若等差数列
满足
,求
的前
项和公式.
已知函数 .
(Ⅰ)求
的值;
(Ⅱ)求
的最大值和最小值
已知函数 , ,
(Ⅰ)若曲线 与曲线 相交,且在交点处有共同的切线,求 的值和该切线方程;
(Ⅱ)设函数 ,当 存在最小值时,求其最小值 的解析式;
(Ⅲ)对(Ⅱ)中的 和任意的 ,证明: .
如图,椭圆
的顶点为
,焦点为
,
,
.
(Ⅰ)求椭圆 的方程;
(Ⅱ)设 为过原点的直线, 是与 垂直相交于 点,与椭圆相交于 , 两点的直线, .是否存在上述直线 使 成立?若存在,求出直线 的方程;并说出;若不存在,请说明理由.