(本小题满分12分)
设二次函数f(x)=ax2+bx(a≠0)满足条件:
①f(-1+x)=f(-1-x);②函数f(x)的图象与直线y=x只有一个公共点.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若不等式>(
)2-tx在t∈[-2,2]时恒成立,求实数x的取值范围.
(12分)如图,的角平分线AD的延长线交它的外接圆于点E
(I)证明:
(II)若的面积
,求
的大小。
.(12分)设是一个离散型随机变量,其分布列如下表,试求随机变量
的期望
与方差
.
ξ |
-1 |
0 |
1 |
P |
![]() |
1-2q[ |
q2 |
.(12分)已知的展开式中前三项的系数成等差数列.
(1)求n的值;
(2)求展开式中系数最大的项.
(12分) 一盒中装有分别标记着1,2,3,4的4个小球,每次从袋中取出一只球,设每只小球被取出的可能性相同.
(1)若每次取出的球不放回盒中,现连续取三次球,求恰好第三次取出的球的标号为最大数字的球的概率;
(2)若每次取出的球放回盒中,然后再取出一只球,现连续取三次球,这三次取出的球中标号最大数字为,求
的分布列与数学期望.
(10分)对于数据组
![]() |
![]() |
![]() |
![]() |
4 |
![]() |
![]() |
![]() |
![]() |
![]() |
(1)做散点图,你能直观上能得到什么结论?.
(2)求线性回归方程.