某商场经营一批进价是每件30元的商品,在市场销售中发现此商品的销售单
价元与日销售量
件之间有如下关系:
销![]() ![]() |
30 |
40 |
45 |
50 |
日销售量![]() |
60 |
30 |
15 |
0 |
(1) 在所给坐标系中,根据表中提
供的数据描出实数对
对应的点,并确定
与
的一个函数关系式
;
(2)设经营此商品的日销售利润为元,根据上述关系式写出
关于
的函数关系式,并指出销售单价
为多少时,才能获得最大日销售利润。
已知数列{an}的前n项和为Sn,且满足Sn=n2,数列{bn}满足bn=,Tn为数列{bn}的前n项和.
(1)求数列{an}的通项公式an和Tn;
(2)若对任意的n∈N*,不等式λTn<n+(-1)n恒成立,求实数λ的取值范围.
已知函数f(x)=的图象过原点,且关于点(-1,2)成中心对称.
(1)求函数f(x)的解析式;
(2)若数列{an}满足a1=2,an+1=f(an),试证明数列为等比数列,并求出数列{an}的通项公式.
已知等差数列{an}满足:a2=5,a4+a6=22,数列{bn}满足b1+2b2+…+2n-1bn=nan,设数列{bn}的前n项和为Sn.
(1)求数列{an},{bn}的通项公式;
(2)求满足13<Sn<14的n的集合.
已知数列{an}的前n项和是Sn,且Sn+an=1.
(1)求数列{an}的通项公式;
(2)记bn=log3,数列
的前n项和为Tn,证明:Tn<
.
已知数列{an}和{bn}满足:a1=λ,an+1=an+n-4,bn=(-1)n(an-3n+21),其中λ为实数,n为正整数.
(1)对任意实数λ,证明:数列{an}不是等比数列;
(2)试判断数列{bn}是否为等比数列,并证明你的结论.