游客
题文

先化简,再求值:(每小题6分,共12分)
(1),其中x =" –" 2;
(2),其中

科目 数学   题型 解答题   难度 中等
知识点: 几何不等式
登录免费查看答案和解析
相关试题

在如图所示的平面直角坐标系中,每个小正方形的边长均为1,△ABC的顶点都在格点上.
实践操作:
(1)在格点图中,将△ABC以原点O为旋转中心,顺时针旋转90°,画出旋转后的△A1B1C1
(2)画出△A1B1C1关于x轴对称的△A2B2C2
学习反思:
△ABC与△A2B2C2是否关于某直线对称?若对称,请直接写出对称轴所在直线的解析式;若不对称,请说明理由.

如图,在平面直角坐标系中,抛物线y=a+bx﹣3(a≠0)与x轴交于点A(﹣2,0)、B(4,0)两点,与y轴交于点C.

(1)求抛物线的解析式;
(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ存在时,求运动多少秒使△PBQ的面积最大,最大面积是多少?
(3)当△PBQ的面积最大时,在BC下方的抛物线上存在点K,使S△CBK:S△PBQ=5:2,求K点坐标.

如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD的外部以AB为边作等边三角形 ABE.点F是对角线BD上一动点(点F不与点B重合),将线段AF绕点A顺时针方向旋转60°得到线段AM,连接FM.

(1)求AO的长;
(2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:AC=AM;
(3)连接EM,若△AEM的面积为40,请直接写出△AFM的周长.

如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).

已知直线y=﹣3x与双曲线y=交于点P (﹣1,n).
(1)求m的值;
(2)若点A (),B()在双曲线y=上,且<0,试比较的大小.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号